• anonymous
The two-column proof with missing statements and reasons proves that if a line parallel to one side of a triangle also intersects the other two sides, the line divides the sides proportionally: Statement Reason 1. Line segment DE is parallel to line segment AC 1. Given 2. Line segment AB is a transversal that intersects two parallel lines. 2. Conclusion from Statement 1. 3. ∠BDE ≅ ∠BAC 3. Corresponding Angles Postulate 4. 4. 5. 5. 6. BD over BA equals BE over BC 6. Converse of the Side-Side-Side Similarity Theorem Which statement and reason accurately completes the proof? 4. ΔBDE ~ ΔBAC; Side-Angle-Side (SAS) Similarity Postulate 5. ∠B ≅ ∠B; Reflexive Property of Equality 4. ∠B ≅ ∠B; Reflexive Property of Equality 5. ΔBDE ~ ΔBAC; Angle-Angle (AA) Similarity Postulate 4. ΔBDE ~ ΔBAC; Side-Angle-Side (SAS) Similarity Postulate 5. ∠A ≅ ∠C; Isosceles Triangle Theorem 4. ∠A ≅ ∠C; Isosceles Triangle Theorem 5. ΔBDE ~ ΔBAC; Angle-Angle (AA) Similarity Postulate
Mathematics
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.