Fan and Medal! Help please! Carbon-14 decays at a constant rate, so it can be used to determine the age of fossils. In particular, if the original amount of Carbon-14 present is A0, then A(t) = A0e^(-kt) can be used find the amount of amount of Carbon-14 remaining after t years. Given that the half-life of Carbon-14 is 5,730 years, what is the value of the decay constant k to 5 decimal places?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Fan and Medal! Help please! Carbon-14 decays at a constant rate, so it can be used to determine the age of fossils. In particular, if the original amount of Carbon-14 present is A0, then A(t) = A0e^(-kt) can be used find the amount of amount of Carbon-14 remaining after t years. Given that the half-life of Carbon-14 is 5,730 years, what is the value of the decay constant k to 5 decimal places?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1/2mo=moxe^(-k5730) 0.5=e^(-k5730) ln0.5=-k5730 -0.693=-k5730 k=-0.693/-5730 k=0.000120

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question