) A hotel finds that its revenue is given by R = 8000 + 760x - 30x2 when it charges 80 + 10x dollars for a room. To the nearest dollar, what is the maximum revenue it can earn?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

) A hotel finds that its revenue is given by R = 8000 + 760x - 30x2 when it charges 80 + 10x dollars for a room. To the nearest dollar, what is the maximum revenue it can earn?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large R = 8000 + 760x - 30x^2\) maximum occurs at the turning point of this line can you work out the turning point of a parabola?
i tried using the -b/2(a) and then plugging that result for x but thats where i get lost
have you worked with derivatives yet?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

no.
damn... k hang on
For \(\Large y = ax^2 + bx + c\) \(\Large (c - \frac{b^2}{4a}) = ymax~~ or~~ ymin\) value at the max point
so ur equation is \(\large R = 8000 + 760x - 30x^2\) \(\large y = ax^2 + bx + c\) so a = -30 b = 760 c = 8000 no can you solve for ymax?
this was the answer in the help video but i think it's wrong. R=(80+10x)(100-3x) 8000-24x+1000x-30x^2 R=-30x^2+976+8000 X= -b/2a= -976/2(-30) and with all of that i was suppposed to end up with $12813 for the maximum
the answer i got was 11400
these were the options A) $9,920 B) $13,530 C) $12,813 D) no maximum
hmm... 12813 is correct using ymax = c - (b^2)/4a ymax = 8000 - 760^2/4(-30) ymax = 8000 - 57760/-120 ymax = 8000 + 4813.33 = $12813 ... does this kinda make ssense tho?
yes, i have just never used that formula before that's why. thank you :)
welcomes ;)

Not the answer you are looking for?

Search for more explanations.

Ask your own question