mathmath333
  • mathmath333
Find the domain and range of this function
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align} f(x)=|x|\hspace{.33em}\\~\\ \end{align}}\)
mathmath333
  • mathmath333
|dw:1432997599944:dw|
anonymous
  • anonymous
for the domain, you have to look where the x exists, which is in the whole section of R, you understand?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
For the range you have to look to the graph, and where it all exists on the Y-scale (the vertical one)
mathmath333
  • mathmath333
x is all negative and positive values
anonymous
  • anonymous
That's right, and Y?
mathmath333
  • mathmath333
y is positive values
anonymous
  • anonymous
Indeed, so the x values are the domain and the y-values are the range.
mathmath333
  • mathmath333
how to write this in standard form
anonymous
  • anonymous
Domain: ] -infinity, infinity[ Range : [0, infinity[ (that's how they write it in our region)
mathmath333
  • mathmath333
i have to write like this f(x)=x^2 domain of f ={x:x\(\in\) R}

Looking for something else?

Not the answer you are looking for? Search for more explanations.