anonymous
  • anonymous
You hear sounds at the following decibel levels: 5 dB, 10 dB, 20 dB, and 40 dB. Which sound is 10 times higher than the lowest pressure humans can hear? A. 5 dB B. 10 dB C. 20 dB D. 40 dB **Not sure how to find this!! :( Thank you!!:)
Physics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Michele_Laino
  • Michele_Laino
we have to use this definition: \[\Large N = 10{\log _{10}}\left( {\frac{{{P_1}}}{{{P_0}}}} \right)\] where N is the number of decibels, and P_0 is a reference pressure
anonymous
  • anonymous
oh okay! how can we find what to plug in?
Michele_Laino
  • Michele_Laino
we have to know how much is the lowest pressure

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ohhh would the lowest pressure be the 5 dB?
anonymous
  • anonymous
oh oops
anonymous
  • anonymous
or wait, it is 5 dB? :/
Michele_Laino
  • Michele_Laino
no, sorry, we can answer to your problem without know how much is the lowest pressure. Since we can write the lowest pressure as our reference pressure, and we can set P_1 = 10*P_0
anonymous
  • anonymous
ohh okay! :)
Michele_Laino
  • Michele_Laino
so we have: \[\Large \begin{gathered} {P_1} = 10{P_0} \hfill \\ N = 10{\log _{10}}\left( {\frac{{10{P_0}}}{{{P_0}}}} \right) = ...? \hfill \\ \end{gathered} \]
anonymous
  • anonymous
10?
Michele_Laino
  • Michele_Laino
ok! 10 dB
anonymous
  • anonymous
ohh so that is our solution? 10 dB? :O
Michele_Laino
  • Michele_Laino
yes!
anonymous
  • anonymous
woo! thank you!!:D
Michele_Laino
  • Michele_Laino
thanks! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.