anonymous
  • anonymous
consider a water source that contains 60,000 gallons of water. Each day 9.4816 gallons of water are removed, but 95% of that water is returned on a daily basis. how long it take to run out fresh water, if water usage increase by 3% every year. write a function/equation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
d0 = B d1 = B - a + ak d2 = (B - a + ak) -a +ak = B - 2a + 2ak d3 = B - 3a + 3ak ----------------- dn = B - na + nak dn = B +na(k-1) ---------------- 0 = B +na(k-1) -B = na(k-1) -B/(a(k-1)) = n
amistre64
  • amistre64
we are only losing 5% a day if 95% is returned dn = B -na(.05) 0 = B -na(.05) B = na(.05) B/a(.05) = n
amistre64
  • amistre64
but assuming we cant pull out a if there is less then a in there, we can work as: (B-a)/(a(.05)) now the questions is, should we allocate the 3% increase per year at the end of a year? or even it out over the course of the year?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
if we allocate it over a year, then a changes by (.03/365) each day dn = B +n(.05) a(1+.03/12)^(n-1) seems fair

Looking for something else?

Not the answer you are looking for? Search for more explanations.