Looking for something else?

Not the answer you are looking for? Search for more explanations.

- anonymous

In lecture 16, in minute 27, the professor talks about solving for the least squared error using calculus and taking partial derivatives.
I can't under stand why we set for example d=0 and proceed ? What relation does this have to gradient descent ?

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions.

Get your **free** account and access **expert** answers to this and **thousands** of other questions

- anonymous

- schrodinger

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- JoshDanziger23

salehmamdouh1984, in effect we are considering the square of the length of the error vector ||e||^2 as a function f(C,D); Prof Strang shows on the board that in his example f(C,D) = (C+D-1)^2 + (C+2D-2)^2 + (C+3D-2)^2; the intention is to choose C and D to minimise f(C,D). The way to find the minimum is to find the two partial derivatives df/dC and df/dD; we know that there is a stationary point where df/dC=df/dD=0. Prof Strang glosses over the point, but it's not hard to show (by taking second partial derivatives) that the stationary point is a minimum. Of course the whole point is to demonstrate that calculus gets you the same answer you can get much more quickly by looking for e to be orthogonal to the columns of A ==> A'Ax = A'b. Josh.

- anonymous

What I am trying to understand,what is the difference between doing the projection method VS the gradient descent algorithm ?

- JoshDanziger23

salehmamdouh1984, isn't the gradient descent algorithm a numerical technique to use when you can't find a minimum any other way? I'm not sure that that's called for when you can go direct to the solution either by projection or by calculus. Josh.

Looking for something else?

Not the answer you are looking for? Search for more explanations.