kanwal32
  • kanwal32
A wheel having mass m has charges +q and -q on diametrically opposite points. It remains equilibrium on a rough inclined plane in the presence of uniform vertical electric field E. The value of E is:
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kanwal32
  • kanwal32
|dw:1433053166507:dw|
kanwal32
  • kanwal32
@IrishBoy123
kanwal32
  • kanwal32
@ParthKohli

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

kanwal32
  • kanwal32
@Luigi0210
kanwal32
  • kanwal32
@Miracrown
anonymous
  • anonymous
Hint: the value of E should hold the gravity of the wheel.
Michele_Laino
  • Michele_Laino
we have to consider this refernece system |dw:1433059642792:dw| where R is the reaction exerted by the inclined plane on the wheel, and I suppose that the radius of the wheel is r
Michele_Laino
  • Michele_Laino
so, for equilibrium we can write these two equations: \[\Large \left\{ \begin{gathered} M{\mathbf{g}} + q{\mathbf{E}} + \left( { - q{\mathbf{E}}} \right) + {\mathbf{R}} = {\mathbf{0}} \hfill \\ {\mathbf{OP}} \times q{\mathbf{E}} + {\mathbf{OQ}} \times \left( { - q{\mathbf{E}}} \right) + {\mathbf{OQ}} \times {\mathbf{R}} = {\mathbf{0}} \hfill \\ \end{gathered} \right.\]
Michele_Laino
  • Michele_Laino
with the condition: \[\Large {R_x} \leqslant {\mu _S}{R_z}\] with R_x and R_z are the components of R, and \[{\mu _S}\] is the friction coefficient on the plane
Michele_Laino
  • Michele_Laino
developing those vector equation, you should get these scalar equations: \[\Large \left\{ {\begin{array}{*{20}{c}} {Mg\sin \theta + {R_x} = 0} \\ {-Mg\cos \theta + {R_z} = 0} \\ {2qEr\sin \theta + r{R_x} = 0} \end{array}} \right.\] and the additional condition, can be rewritten as follows: \[\Large - {R_x} \leqslant {\mu _S}{R_z}\]
IrishBoy123
  • IrishBoy123
|dw:1433066327238:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.