anonymous
  • anonymous
What is the length of CD? http://media.apexlearning.com/Images/201004/04/19ddb83b-92c7-4835-8ee0-d1c224289299.gif
Geometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@ganeshie8
anonymous
  • anonymous
Can please someone help me with this one?
ganeshie8
  • ganeshie8
the triangles are similar, simply set up a proportion and solve x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
\[\large \dfrac{15-x}{x}=\dfrac{20}{5}\] solve \(x\)
anonymous
  • anonymous
oh ok thank you so once I solve it then that will be the answer right?
ganeshie8
  • ganeshie8
what do you get when you solve ?
anonymous
  • anonymous
Wait let me solve it
ganeshie8
  • ganeshie8
okie
anonymous
  • anonymous
I got 3.75. Is that right?
ganeshie8
  • ganeshie8
doesn't look correct try again
anonymous
  • anonymous
Okay
anonymous
  • anonymous
0.7?
ganeshie8
  • ganeshie8
\[\large \dfrac{15-x}{x}=\dfrac{20}{5} \] canceling common factor 5 on right hand side fraction gives \[\large \dfrac{15-x}{x}=\dfrac{4}{1}\] yes ?
anonymous
  • anonymous
Yes.
ganeshie8
  • ganeshie8
cross multiply and get \[15-x = 4x\]
ganeshie8
  • ganeshie8
add \(x\) both sides \[15 = 5x\]
anonymous
  • anonymous
Okay
anonymous
  • anonymous
so its 3
ganeshie8
  • ganeshie8
divide \(5\) both sides \[3=x\] which is same as \[x=3\]
anonymous
  • anonymous
Got it, thank you so much :)
ganeshie8
  • ganeshie8
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.