anonymous
  • anonymous
Without drawing the graph of the equation, determine how many points the parabola has in common with the x-axis and whether its vertex lies above, on, or below the x-axis. y = x2 – 12x + 12 (Points : 4) 1 point in common; vertex on x-axis 2 points in common; vertex below x-axis 2 points in common; vertex above x-axis no points in common; vertex above x-axis
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@KathyMae95
anonymous
  • anonymous
Calculate the discriminant and use it to determine how many real-number roots the equation has. 3x2 – 6x + 1 = 0 (Points : 4) three real-number roots two real-number roots one real-number root no real-number roots and then theres this one
anonymous
  • anonymous
brb

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

netlopes1
  • netlopes1
please, how is the question: x^2 -12x + 12 or 3x^2 - 6x +1?
anonymous
  • anonymous
because and can be idiot. how else. idk why they made it like that

Looking for something else?

Not the answer you are looking for? Search for more explanations.