anonymous
  • anonymous
each function is either even or odd .use f(-x) to state which situation applies f(x)=5x^3-8x please help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
do you get the difference between even and odd functions?
anonymous
  • anonymous
This is a good resource to start with: http://www.purplemath.com/modules/fcnnot3.htm Feel free to ask if you still have any questions
UnkleRhaukus
  • UnkleRhaukus
Find f(-x) :

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i will look at it thank you
UnkleRhaukus
  • UnkleRhaukus
\[f(x)=5x^3-8x\] so \[f(-x)=5(-x)^3-8(-x)\] .. can you simplify this?
anonymous
  • anonymous
-5x^3+8x
UnkleRhaukus
  • UnkleRhaukus
good, so you found \[f(-x)=-5x^3+8x\] if we now factor out the negative sign\[f(-x)=-(5x^3-8x)\] We have the negative of the original function\[f(-x)=-f(x)\] This is the definition of an odd function.
anonymous
  • anonymous
thank you :)
UnkleRhaukus
  • UnkleRhaukus
if we had gotten\[f(-x) = f(x)\], (after simplification), it would have been an even function

Looking for something else?

Not the answer you are looking for? Search for more explanations.