kobeni-chan
  • kobeni-chan
Find the sum of a finite geometric sequence from n = 1 to n = 6, using the expression −2(5)^(n − 1).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kobeni-chan
  • kobeni-chan
@Nnesha
kobeni-chan
  • kobeni-chan
I know you're supposed to use Sn= a1 - an(r) / 1-r, and I had a1=-2 and an (or a6) = -6250. But when I tried to solve I didnt get any of my multiple choice answers.
Nnesha
  • Nnesha
formula is \[\huge\rm s_n = \frac{ a_1(1-r^n )}{ 1-r }\] where r is common ratio n is number of terms

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

kobeni-chan
  • kobeni-chan
Oh I must've gotten the wrong formula :( So r is 5 and n is 6, right?
Nnesha
  • Nnesha
yep
kobeni-chan
  • kobeni-chan
Oh I got it now. Thank you! :)
Nnesha
  • Nnesha
np :-)

Looking for something else?

Not the answer you are looking for? Search for more explanations.