ParthKohli
  • ParthKohli
Solving Project Euler #3.
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

ParthKohli
  • ParthKohli
Solving Project Euler #3.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ParthKohli
  • ParthKohli
``` The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143? ```
ParthKohli
  • ParthKohli
I started working with a smaller number for simplicity, such as 136. 1. Make a list of all divisors of the number. 136 = 2^3 * 17 ---> 8 divisors {1, 2, 4, 8, 17, 34, 68, 136} 2. Now that we have a list of divisors, let's begin to sort out all the composite factors. How do we do that? Well, we first remove 1 from the set of divisors \(S\) and call that \(S'\). Now, a composite factor here would be one that can be expressed as the product of elements in \(S'\). We remove all those. How? We create a set of all such products. And then we remove the common elements from \(S'\) and get a list of prime factors.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.