anonymous
  • anonymous
simplify the trigonometric expression? sin^2(theta)/1- cos(theta)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Nnesha
  • Nnesha
trig identity sin^2 theta = what ?
anonymous
  • anonymous
Just a suggestion, but go to mathway.com and it solves most problems your stuck on and helps break stuff down
anonymous
  • anonymous
i know sin (theta) = 1/csc(theta)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
just becareful sometimes it will give u the wrong answer js :)
Nnesha
  • Nnesha
identity \[\huge\rm sin^2 \theta + \cos^2 \theta = 1 \] solve this for sin^2 theta
anonymous
  • anonymous
oh yeah, i forgot about that! sin^2 (theta) = 1-cos^2(theta)
anonymous
  • anonymous
Yeah you have to be exact with it and sometimes it wont give you the answer so, Yeah:) very helpful though still
Nnesha
  • Nnesha
yep right now apply difference of square method \[\huge\rm a^2 - b^2 = (a+b)(a-b)\]
anonymous
  • anonymous
(1 + cos (theta))(1-cos(theta))?
anonymous
  • anonymous
so the answer is 1 + cos(theta)?
Nnesha
  • Nnesha
yep right \[\huge\rm \frac{ (1 - \cos \theta )(1+ \cos \theta)}{ 1-\cos \theta }\]
Nnesha
  • Nnesha
yes right
anonymous
  • anonymous
cuz 1 - cos(theta) cancels out
anonymous
  • anonymous
thanks!
Nnesha
  • Nnesha
np :-)

Looking for something else?

Not the answer you are looking for? Search for more explanations.