anonymous
  • anonymous
Jim halves the distance between himself and a sound source. What is the change in decibels of the sound he hears? -6 dB, -2 dB, +2 dB, or +6 dB ? :/
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
we start with an intensity I_1, after Jim halves the distance, the new intensity will be I_2= 4*I_1 so we can write: \[\large \begin{gathered} {N_1} = {\log _{10}}\left( {\frac{{{I_1}}}{{{I_0}}}} \right) \hfill \\ \hfill \\ {N_2} = {\log _{10}}\left( {\frac{{{I_2}}}{{{I_0}}}} \right) = {\log _{10}}\left( {\frac{{4 \times {I_1}}}{{{I_0}}}} \right) \hfill \\ \end{gathered} \] where I_0 is a reference intensity
anonymous
  • anonymous
ok! :)
anonymous
  • anonymous
what do we plug in from there?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
sorry the right formulas are: \[\large \begin{gathered} {N_1} = 10 \times {\log _{10}}\left( {\frac{{{I_1}}}{{{I_0}}}} \right) \hfill \\ \hfill \\ {N_2} = 10 \times {\log _{10}}\left( {\frac{{{I_2}}}{{{I_0}}}} \right) = 10 \times {\log _{10}}\left( {\frac{{4 \times {I_1}}}{{{I_0}}}} \right) \hfill \\ \end{gathered} \] now the requested change is: \[\large \begin{gathered} \Delta N = {N_2} - {N_1} = 10 \times {\log _{10}}\left( {\frac{{4 \times {I_1}}}{{{I_0}}}} \right) - 10 \times {\log _{10}}\left( {\frac{{{I_1}}}{{{I_0}}}} \right) = \hfill \\ \hfill \\ = 10 \times {\log _{10}}\left( 4 \right) \hfill \\ \end{gathered} \]
anonymous
  • anonymous
whoah! okay! so then we get 40?
Michele_Laino
  • Michele_Laino
no, since: \[\large 10 \times {\log _{10}}\left( 4 \right) = 10 \times 0.60206 = ...\]
anonymous
  • anonymous
ohh so it is 6.0206 so our answer is +6 dB?
Michele_Laino
  • Michele_Laino
yes! that's right!
anonymous
  • anonymous
yay!! thanks!!:)
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.