the population of the earth is approximately 6.1 billion people and is growing at an annual rate of 1.4%. Assuming a Malthusian growth mode, find the world population in 29 years. Please round the answer to the nearest tenth of a billion.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

the population of the earth is approximately 6.1 billion people and is growing at an annual rate of 1.4%. Assuming a Malthusian growth mode, find the world population in 29 years. Please round the answer to the nearest tenth of a billion.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I think we can use this equation: $$ \Large y =6.1~\left(1 + \frac{1.4}{100} \right)^t $$
thank you so much for helping me :)
the "malthusian model' seems a little ambiguous, but the two models come out about the same $$\Large y= 6.1 e ^{0.014 t } $$

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

actually it does make a difference, since it says round to the tenth place using the equation with e, i get 9.2 billion rounded to nearest tenth place
thats what I got as well
the two models come out differently, if you round out to the nearest tenth. i would go with the latter model, using e
$$\Large { f(t) =6.1~\left(1 + .014 \right)^{~t} \\\Large f(29) =6.1~\left(1 + .014 \right)^{~29} = 9.12915 \\~\\\Large g(t)= 6.1 e ^{0.014 t } \\ g(29) = 6.1 e ^{0.014 \times 29 } = 9.154895 }$$

Not the answer you are looking for?

Search for more explanations.

Ask your own question