Babynini
  • Babynini
Projecting Vertex.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Babynini
  • Babynini
1 Attachment
Babynini
  • Babynini
@acxbox22 :)
acxbox22
  • acxbox22
sorry i dont know this stuff :(

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Babynini
  • Babynini
@Nnesha
IrishBoy123
  • IrishBoy123
\(proj_{\vec{v}}\vec{u} = \frac{\vec{v} \bullet \vec{u}}{|\vec v|^2}\vec{v}\) is the *vector* projection of \(\vec u \) on \(\vec v \). it's just a formula so calculate the various parts, eg \(\vec{v} \bullet \vec{u} = <11,3> \bullet <-6,-4>\)
IrishBoy123
  • IrishBoy123
\(| \vec v |^2 = \vec v \bullet \vec v\)
Babynini
  • Babynini
so u * v = <-66,-12>
Babynini
  • Babynini
yeah?
Babynini
  • Babynini
simplified u*v=-78 v*v=52 is it right so far?
Babynini
  • Babynini
@IrishBoy123
Babynini
  • Babynini
@Loser66 :)
anonymous
  • anonymous
can you help me plz
Babynini
  • Babynini
Post your question on a new feed and i'll try :)
IrishBoy123
  • IrishBoy123
"u • v = <-66,-12>" nah u • v = <11,3).<-6,-4> = (11)(-6) + (3)(-4) = -66 - 12 = - 78
Babynini
  • Babynini
yep yep that's what I got for that one :)
IrishBoy123
  • IrishBoy123
\(\vec u \bullet \vec v = \bullet = (u_x \times v_x) + (u_y \times v_y) \)
IrishBoy123
  • IrishBoy123
sorry, bandwith issues, i am clearly behind times. let me read the thread again
Babynini
  • Babynini
It's all good :)
IrishBoy123
  • IrishBoy123
v.v = <-6,-4><-6,-4> = 36 + 16 = 52 seems we agree
IrishBoy123
  • IrishBoy123
what next?
Babynini
  • Babynini
uh..not sure haha
Babynini
  • Babynini
plug it into the formula?
IrishBoy123
  • IrishBoy123
yes <9,6>?
Babynini
  • Babynini
so we have \[\frac{ -78 }{ 52}v\]
Babynini
  • Babynini
woah where did you get<9,6> ?
IrishBoy123
  • IrishBoy123
v = <-6,-4> and, -78/52 = -3/2 and, -3/2 * <-6,-4> = <9,6> agree?
Babynini
  • Babynini
ah I see, thanks :)
Babynini
  • Babynini
so, is that the final answer then? o.0
Babynini
  • Babynini
or ..is that just what \[u _{1} \] equals?
IrishBoy123
  • IrishBoy123
that answers (a). for (b) you have to .....!!! do something v similar
Babynini
  • Babynini
let's do it x)
Babynini
  • Babynini
we would use (-75/52)v again, yeah?
IrishBoy123
  • IrishBoy123
you've already done \(\vec u_1\) that's what you just calculated so you need to do the same on \(\vec u_2\) so what is \(\vec u_2\) ? it is orthogonal to \(\vec v\) ...
Babynini
  • Babynini
its \[u - u _{1}\]
Babynini
  • Babynini
<2,-3>?
IrishBoy123
  • IrishBoy123
<-6,-4>• = 0 -6x-4y = 0 try: <-6,-4>•<4,-6> or <-6,-4>•<-4,6> both work we can use either
Babynini
  • Babynini
does what I did work? o.o
Babynini
  • Babynini
I'm pretty sure that's what the prof did in class but ah well haha
IrishBoy123
  • IrishBoy123
let me actually do it
Babynini
  • Babynini
k
IrishBoy123
  • IrishBoy123
<2,-3> Roger
Babynini
  • Babynini
Yay! fantastic :)
Babynini
  • Babynini
thanks for taking the time to calculate it all :)
Babynini
  • Babynini
so we have \[u _{1}=<9,6> u _{2}=<2,-3>\]
Babynini
  • Babynini
what goes into \[proj _{v}u\]?
Babynini
  • Babynini
nevermind, they just wanted <9,-6> there too :) thanks!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.