anonymous
  • anonymous
When does the double-slit interference have its first dark spot on either side of the central peak intensity? **will draw image!** A. when the paths d_1 and d_2 differ by one wavelength B. when the paths d_1 and d_2 differ by half a wavelength C. when the waves arrive in step, or "in phase" with each other D. when the paths d_1 and d_2 have the same length
Physics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
|dw:1433263092745:dw|
anonymous
  • anonymous
|dw:1433263217576:dw|
anonymous
  • anonymous
and then the other parts are different shades of light!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the parts shaded in black are the darkest areas and the rest are lighter, but different shades of light if that makes sense haha :P
Michele_Laino
  • Michele_Laino
ok!
Michele_Laino
  • Michele_Laino
we have these two conditions: \[\begin{gathered} {\text{path difference = n\lambda }}{\text{,}}\quad {\text{bright regions}} \hfill \\ {\text{path difference = }}\left( {{\text{n + }}\frac{{\text{1}}}{{\text{2}}}} \right){\text{\lambda }}{\text{,}}\quad {\text{dark regions}} \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
\[\begin{gathered} {\text{path difference = }}n\lambda ,\quad {\text{bright regions}} \hfill \\ {\text{path difference = }}\left( {n + \frac{1}{2}} \right)\lambda {\text{,}}\quad {\text{dark regions}} \hfill \\ \end{gathered} \]
anonymous
  • anonymous
ok! what happens next?
Michele_Laino
  • Michele_Laino
where n is an integer, namely n=0, +/-1, +/-2,...
Michele_Laino
  • Michele_Laino
\[n = 0, \pm 1, \pm 2,...\]
Michele_Laino
  • Michele_Laino
the first dark region is given setting n=0
anonymous
  • anonymous
ohh ok!what does that mean?
Michele_Laino
  • Michele_Laino
It means option B
anonymous
  • anonymous
ohhh okay i see now :) cool!! thank you1!:D
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.