anonymous
  • anonymous
The amplitude of a wave is A and intensity is I. Which amplitude is neccessary for the intensity to be doubled to 2I? a. A^2 b. √A c.√2A d. 2A
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
the intensity is proportional to the square of the amplitude
anonymous
  • anonymous
I=kA^2 so i multiplied both sides by two to get 2I=2A^2 am i right?
Michele_Laino
  • Michele_Laino
yes! correct! So, the new amplitude is: sqrt(2)*A

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
But wouldn't it give √2I too? Or it doesn't matter ?
Michele_Laino
  • Michele_Laino
no the intensity is 2*I, so we can write: \[2I = K{A^2} + K{A^2} = 2K{A^2} = K{\left( {\sqrt 2 A} \right)^2}\]
Michele_Laino
  • Michele_Laino
so the new amplitude is: \[{\sqrt 2 A}\]
anonymous
  • anonymous
But if we square root one side of the equation won't we do the same to the other side? So it becomes like √2I=k√2A ?
anonymous
  • anonymous
@Michele_Laino
Michele_Laino
  • Michele_Laino
I haven't squared root the sides of that equation. The new intensity is 2*I, and as all intensities, it has to be proportional to the square of some amplitude, so I can write: \[\Large 2I = K{B^2}\] where B is the new amplitude. Now comparing that equation with the previous equation: \[\Large 2I = 2K{A^2}\] we can write: \[\Large {B^2} = 2{A^2}\] and taking the square root, we get: \[\Large B = \sqrt 2 A\]
Michele_Laino
  • Michele_Laino
@rosestella
anonymous
  • anonymous
Ohh! I get it if you put √2A in 2I=kB^2 you get 2A^2 THANKYOU SO MUCH !!!!
Michele_Laino
  • Michele_Laino
:):)

Looking for something else?

Not the answer you are looking for? Search for more explanations.