anonymous
  • anonymous
A circle has its center at the origin, and (5, -12) is a point on the circle. How long is the radius of the circle? 5 12 13
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
You want the distance from that point to the origin. Do you know how to find the distance between two points?
anonymous
  • anonymous
|dw:1433281453913:dw| Simply use the triangle formula for perpendicular triangles, which says: \[c^2 = a^2 + b^2\] Where c is hyphotenus, a and b are sides. In here \[r^2 = 12^2 + 5^2 = 169\] \[r = \sqrt{169} = 13\]
campbell_st
  • campbell_st
well a simple method is to know the standard form of the equation of the circle \[(x - h)^2 + (y - k)^2 = r^2\] (h, k) is the centre... so substitute the given values then substitute the point this will allow you to calculate r^2 and then r... the radius... hope it helps

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
thank you:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.