anonymous
  • anonymous
Which expression is a sixth root of (-1+sqrt3)? A. 6sqrt2 (cos90) +isin(90)) B. 6sqrt2 (cos300) +isin(300)) C. 6sqrt2 (cos60) +isin(60)) D. 6sqrt2 (cos20) +isin(20))
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Sorry it is (-1+isqrt3)
freckles
  • freckles
Have you first tried to write (-1+sqrt(3)*i) in r(cos(theta)+isin(theta)) form?
freckles
  • freckles
or I guess instead of finding all 6th roots you go go another way you could raise your choices to the 6th power and see which gives you -1+sqrt(3)*i

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I got B for my answer, is that right?
freckles
  • freckles
well let's check: \[(\sqrt[6]{2}(\cos(300)+i \sin(300))^6 \\ (\sqrt[6]{2})^6(\cos(300 \cdot 6)+i \sin(300 \cdot 6)) \\ 2^\frac{6}{6}(\cos(1800)+i \sin(1800)) \\ 2^1 (\cos(1800-4(360))+i \sin(1800-4(360)) \\ 2(\cos(360)+i \sin(360))\] can you finish simplifying

Looking for something else?

Not the answer you are looking for? Search for more explanations.