anonymous
  • anonymous
Write each expression in the standard form for a complex number, a + bi. [(1 / 2)(cos(72°)) + isin(72°)]5 [√1(cos(3π /14)) + isin(3π /14)]7 [√5(cos(5π / 16)) + isin(5π / 16)]4 [3√7(cos(π / 18)) + isin(π / 18)]6
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@geerky42
anonymous
  • anonymous
@geerky42 Can you help me? You don't have to explain every problem, just help me understand the basics
anonymous
  • anonymous
take the number out front and raise it to the power then multiply the angle by the power

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Seems simple enough, is that all?
anonymous
  • anonymous
\[(\frac{1}{2}\left(\cos(72^\circ)+i\sin(72^\circ)\right)^5\] \[=\frac{1}{2^5}\left(\cos(72\times 5)+i\sin(72\times 5)\right)\]
anonymous
  • anonymous
yes it is real easy of course you still have to do the arithmetic, then evaluate the functions
anonymous
  • anonymous
\[\frac{1}{32}\left(\cos(360)+i\sin(360)\right)\] \[\frac{1}{32}\left(1+0\right)\]\[\frac{1}{32}\]
anonymous
  • anonymous
Seems simple enough, is that all?

Looking for something else?

Not the answer you are looking for? Search for more explanations.