anonymous
  • anonymous
Geometry :D Suppose f and g are two isometries such that f(A) = g(A), f(B) = g(B), and f(C) = g(C) for some nondegenerate triangle ΔABC. Show that f = g
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I feel like this should be easy, but still getting used to all the geometry theorems and what not.
anonymous
  • anonymous
@freckles know anything about this stuff?
anonymous
  • anonymous
@ganeshie8 Know any of this stuff?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
idk much but i found this #3 http://www.ms.uky.edu/~droyster/courses/spring04/homework/restricted/Homework2%20Solns.pdf @ikram002p did non eucledean geometries a couple of years ago
anonymous
  • anonymous
Ah, nice find! I found something else online, but it used a theorem that I couldnt use based on the sequence of my text. But alright, if ikram knows some of this stuff, Ill see what he can do when I have questions. I think I can just use what that link gives. Thanks :)
ganeshie8
  • ganeshie8
good luck! :)
ikram002p
  • ikram002p
hey first u need to know what isometries functions means, it means a rigid transforms function which maps a shape to some where else but without changing size in other way both origin and transforms are congruent.
ikram002p
  • ikram002p
lets do it in geometry style |dw:1433400064930:dw|
ikram002p
  • ikram002p
so since both are isometries we have 3 congruent triangles, now here is a thing why it called rigid transformation it since u do not change it size and shape , like triangle do not become a circle for example or dont become another triangle with same size but different sides that cannot happen.
ikram002p
  • ikram002p
now step two, it says if f(A) = g(A), f(B) = g(B), and f(C) = g(C), then show Show that f = g in euclidean geometry its ok if u wanna only graph it that works like this it would be a proof by itself |dw:1433400511306:dw|
ikram002p
  • ikram002p
now since you wanna it theoretically f(A)=g(A) g^-1o f(A)=g^_1 o g(A) =A so if u apply the function g^-1 o f on the other two points u got g^-1 o f(B)=B g^-1 o f(C)=C according to a theorem (idk if ts given in ur book or u need to prove it let me know in both cases ) g^-1o f must be the identity which means :- g^-1 o f(P)=P , for any P on the triangle g o g^-1 o f(P)= g(P) f(P)=g(P) which is done :D let me know if something is not clear enough, good luck !!

Looking for something else?

Not the answer you are looking for? Search for more explanations.