AmTran_Bus
  • AmTran_Bus
Find the inverse of y= e cubed root of x?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
AmTran_Bus
  • AmTran_Bus
|dw:1433366907610:dw|
AmTran_Bus
  • AmTran_Bus
AmTran_Bus
  • AmTran_Bus
Would you not take ln of both sides?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

phi
  • phi
yes, as the first step what do you get ?
AmTran_Bus
  • AmTran_Bus
\[\ln y = x \sqrt[3]{x}\]
phi
  • phi
just \[ \ln y = \sqrt[3]{x} \]
AmTran_Bus
  • AmTran_Bus
Oh yes, my bad. they cancel
phi
  • phi
now how do you undo the cubed root ?
AmTran_Bus
  • AmTran_Bus
Cube it!
phi
  • phi
fyi, \[ \ln\left(e^{stuff}\right) = stuff \]
phi
  • phi
yes so cube both sides use parens around ln y
AmTran_Bus
  • AmTran_Bus
|dw:1433367280670:dw|
AmTran_Bus
  • AmTran_Bus
Is that good? If so, on the attachment I posted above, it looks like it matches the third down, right?
AmTran_Bus
  • AmTran_Bus
@phi
AmTran_Bus
  • AmTran_Bus
Thanks for helping me.
phi
  • phi
yes

Looking for something else?

Not the answer you are looking for? Search for more explanations.