A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 one year ago
sectan=cos/1+sin
I have to get the left to become the right without changing the right hand side using trig fomulas
anonymous
 one year ago
sectan=cos/1+sin I have to get the left to become the right without changing the right hand side using trig fomulas

This Question is Closed

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0So how can you rewrite the lefthand side to start out?

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0No, how would you do it? Just making sure you know how to start, lol.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0I changed the sec and tan to 1/cos and sin/cos

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Right. And both of those fractions have a denominator of cos and can thus be combined into \(\frac{1sinx}{cosx}\) I'm sure that makes sense. From there, the trick is to multiply top and bottom by the conjugate of the numerator. As in multiply top and bottom by 1+sinx. So what would the numerator become if you wee to do that?

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0(1sin^2)/cos(1+sin)?

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Exactly. And you can use an identity on the \(1sin^{2}x\)

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0RIght, you would now have \[\frac{ \cos^{2}x }{ cosx(1+sinx) }\] which from there you can seen how one of the cosines would cancel and youd have the result youre looking for :)
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.