sec-tan=cos/1+sin I have to get the left to become the right without changing the right hand side using trig fomulas

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

sec-tan=cos/1+sin I have to get the left to become the right without changing the right hand side using trig fomulas

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

So how can you rewrite the left-hand side to start out?
yes
No, how would you do it? Just making sure you know how to start, lol.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I changed the sec and tan to 1/cos and sin/cos
Right. And both of those fractions have a denominator of cos and can thus be combined into \(\frac{1-sinx}{cosx}\) I'm sure that makes sense. From there, the trick is to multiply top and bottom by the conjugate of the numerator. As in multiply top and bottom by 1+sinx. So what would the numerator become if you wee to do that?
(1-sin^2)/cos(1+sin)?
Exactly. And you can use an identity on the \(1-sin^{2}x\)
cos^2/(1+sin)
RIght, you would now have \[\frac{ \cos^{2}x }{ cosx(1+sinx) }\] which from there you can seen how one of the cosines would cancel and youd have the result youre looking for :)
thank you so much
No problem :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question