A biologist wants to estimate the median width of over 200 oak trees in a forest. Ten trees were selected at random, and their widths, in centimeters, were recorded. 63, 59, 12, 43, 71, 35, 28, 52, 47, 26 What is the estimated median width of all oak trees in the forest? same thing @cman456

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A biologist wants to estimate the median width of over 200 oak trees in a forest. Ten trees were selected at random, and their widths, in centimeters, were recorded. 63, 59, 12, 43, 71, 35, 28, 52, 47, 26 What is the estimated median width of all oak trees in the forest? same thing @cman456

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Okay so first you organize all the numbers from lowest to highest,
12 26 28 35 43 47 52 59 63 71
Yep, and you cross one of each side till you get to the middle number!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

43 and 47
Good! so if there is a even amount, you add the two together and then divide by two:)
so 47+43= 90.. 90/2=45! so 45 is your median :)
thank you!!!!
Anytime :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question