anonymous
  • anonymous
Find the sum of the infinite geometric series 8 + 4 + 2 + 1 +...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jim_thompson5910
  • jim_thompson5910
|dw:1433381103015:dw|
jim_thompson5910
  • jim_thompson5910
|dw:1433381109007:dw|
jim_thompson5910
  • jim_thompson5910
|dw:1433381124919:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
Rule \[\Large \sum_{k=1}^{\infty}a*r^{k-1} = \frac{a}{1-r}\] if and only if |r| < 1. Since r = 0.5, that makes |r| < 1 true, which allows us to use the formula
anonymous
  • anonymous
I'm confused, do I used that equation to find the sum? If so what is a?
jim_thompson5910
  • jim_thompson5910
I posted what 'a' was in my second post above
jim_thompson5910
  • jim_thompson5910
a = first term
jim_thompson5910
  • jim_thompson5910
a = 8 is the first term r = 0.5 is the common ratio you use \[\Large S = \frac{a}{1-r}\]
anonymous
  • anonymous
So the sum is 16?
geerky42
  • geerky42
Yes.
jim_thompson5910
  • jim_thompson5910
yep S = 16

Looking for something else?

Not the answer you are looking for? Search for more explanations.