anonymous
  • anonymous
Identify the 42nd term of an arithmetic sequence where a1 = -12 and a27 = 66. 1) 70 2) 72 3) 111 4) 114
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Here_to_Help15
anonymous
  • anonymous
@ganeshie8
campbell_st
  • campbell_st
well you need to find the common difference a term in an arithmetic sequence is found using \[a_{n} = a_{1} + (n -1) \times d\] you know the 27th term so n = 27 and you know the 1st term so \[66 = -12 + (27 - 1) d\] you need to solve for d

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thanks Hun ! God bless you !

Looking for something else?

Not the answer you are looking for? Search for more explanations.