anonymous
  • anonymous
Please help one question! Use graphs and tables to find the limit and identify any vertical asymptotes of the function: lim x->2, 1/((x-2)^2) I know that it is +infinite and the asymptote is 2 but i dont know how to explain it
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Luigi0210
  • Luigi0210
I guess you could say that as you approach 2 from the left it shoots up to infinity. And being 2 would leave you with an undefined value. The limit coming from the right to 2 would also approach infinity.
anonymous
  • anonymous
But i dont know how to explain why it does that. Like I need to explain how I got my answer but I dont know how to explain it.
anonymous
  • anonymous
@Luigi0210

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Luigi0210
  • Luigi0210
You could do what the instructions said and use a graph and table. Visually speaking, you can see it starts shooting up as it approaches 2. Mathematically, if you look at a table, the values start increasing as well. \(\large \lim_{x\rightarrow1.9} f(x)=100\) \(\large \lim_{x\rightarrow1.99} f(x)=10000\) \(\large \lim_{x\rightarrow1.999} f(x)=1000000\) \(\large \lim_{x\rightarrow1.99999} f(x)=+\infty\)
anonymous
  • anonymous
I understand that part thank you, but what part of the equation shows the graph going up? I know that x -> 2 shows us the vertical asymptote of 2, but how does 1/((x-2)^2) show it going up?
Luigi0210
  • Luigi0210
Are you asking how to clarify it is increasing?
anonymous
  • anonymous
Yes. I
Luigi0210
  • Luigi0210
plug in values? x=1, \(f(x)=\frac{1}{(x-2)^2} ===> f(1)\frac{1}{(1-2)^2}=\frac{1}{-1^2}=1\) x=1.5 \(f(x)=\frac{1}{(x-2)^2} ===> f(1.5)\frac{1}{(1.5-2)^2}=\frac{1}{-.5^2}=4\) x=1.75 \(f(x)=\frac{1}{(x-2)^2} ===> f(1.75)\frac{1}{(1.75-2)^2}=\frac{1}{-.25^2}=16\) x=1.9 \(f(x)=\frac{1}{(x-2)^2} ===> f(1)\frac{1.9}{(1.9-2)^2}=\frac{1}{-.1^2}=100\)
Luigi0210
  • Luigi0210
*f(1.9) not f(1)
anonymous
  • anonymous
Refer to the attached plot.
1 Attachment
anonymous
  • anonymous
Thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.