theopenstudyowl
  • theopenstudyowl
@
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
pooja195
  • pooja195
@?
theopenstudyowl
  • theopenstudyowl
@Michele_Laino

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
question #1 I think the first option, namely: \[\Large \begin{gathered} {\mu _{\bar x}} = p \hfill \\ {\sigma _{\bar x}} = \frac{\sigma }{{\sqrt n }} \hfill \\ {\mu _{\bar p}} = \bar x \hfill \\ {\sigma _{\bar p}} = \sqrt {\frac{{p\left( {1 - p} \right)}}{n}} \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
sorry, please wait, I didn't see the other options
Michele_Laino
  • Michele_Laino
First question: I think the fifth option, namely the last option
Michele_Laino
  • Michele_Laino
question #8 when I flip three coins one time, I have probability p= 1/8 to get three heads probability q= 7/8 to get other events Now the requested probability is equal to the product p*q, namely p*q= (1/8)*(7/8)=...
Michele_Laino
  • Michele_Laino
Question #9 the mean is 75 and the standard deviation is: \[\sigma = \sqrt {100 \times \frac{{75}}{{100}} \times \frac{{25}}{{100}}} = 4.33\] now those value referred to the population, becomes: mean=75/100=... standard deviation = 4.33/100=...
Michele_Laino
  • Michele_Laino
Question #7 here the standardized variable t is: t=(6.8-6)/3.2= 0.25 Now the probability to get a length less than 6 inches, is 40.13%, here I'm referring to the "erf" function table, so the probability to get a length greater than 6 inches is 100-40.13= 59.87 so we have 1000*59.87% = 598.7 crabs, whose shell has a length greater than 6 inches. Then the requested proportion is: 50/598.7=...
Michele_Laino
  • Michele_Laino
Question #4 here we have to apply the binomial distribution, so we can write: \[\Large 0.0148 = \left( {\begin{array}{*{20}{c}} n \\ {15} \end{array}} \right)\frac{1}{{{2^n}}}\] that equation is checked for n=20
Michele_Laino
  • Michele_Laino
question #5 here we can compute these two parameters: mean=400*0.78=312 standard deviation = sqrt(400*0.78*0.22)= 8.28 standardized varaible t= (312-300)/8.28= 1.5 so, using the table of the "erf" function, we get: probability= 0.5-0.4332=...
Michele_Laino
  • Michele_Laino
Question #2 I think it is the last option, namely normalcdf(-E99,50,400,7.14) since we have this: mean value = 0.85*400=... standard deviation = sqrt(400*0.85*0.15)= 7.14
Michele_Laino
  • Michele_Laino
Question #3 the probability to get a double is 1/12, whereas the probability to get not a double is 11/12 so,I think that the requested probability is: \[\Large P = {\left( {\frac{1}{{12}}} \right)^4}{\left( {\frac{{11}}{{12}}} \right)^4}\]
Michele_Laino
  • Michele_Laino
Question #1 your answer is right!
Michele_Laino
  • Michele_Laino
Question #6 we have: minimum value= 500*0.4=200 probability of success= 0.35 number of tests=500 so it is the last option: using the Central Limit Thorem- binomcdf(500, 0.35, 200)

Looking for something else?

Not the answer you are looking for? Search for more explanations.