Find the sum of the infinite geometric series, if it exists. 4 - 1 +1/4 -1/16 + . . . A. - 1 B. 3 C. 16/5 D. does not exist

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the sum of the infinite geometric series, if it exists. 4 - 1 +1/4 -1/16 + . . . A. - 1 B. 3 C. 16/5 D. does not exist

AP Math
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1433468481845:dw|
We have to find the common ratio since they told us this a geometric sequence. A common ratio (r) is basically the number divided by the preceding one. If we look at the sequence, we see that the common ration is -1/4 because: \[(-1) / (4) = -1/4\] \[(1/4)/(-1)= -1/4 \] \[(-1/16)/(1/4)= -1/4\] Now, there is a formula for finding the sum of an infinite geometric sequence. Basically, there is only one condition: \[\Large \left| r \right|<1\] Or in other words \[\Large -1
Everywhere I said sequence, I meant series*

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Use this math calculator to solve this geometric series. http://www.acalculator.com/quadratic-equation-calculator-formula-solver.html
b

Not the answer you are looking for?

Search for more explanations.

Ask your own question