anonymous
  • anonymous
Find the sum of the infinite geometric series, if it exists. 4 - 1 +1/4 -1/16 + . . . A. - 1 B. 3 C. 16/5 D. does not exist
AP Math
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1433468481845:dw|
anonymous
  • anonymous
We have to find the common ratio since they told us this a geometric sequence. A common ratio (r) is basically the number divided by the preceding one. If we look at the sequence, we see that the common ration is -1/4 because: \[(-1) / (4) = -1/4\] \[(1/4)/(-1)= -1/4 \] \[(-1/16)/(1/4)= -1/4\] Now, there is a formula for finding the sum of an infinite geometric sequence. Basically, there is only one condition: \[\Large \left| r \right|<1\] Or in other words \[\Large -1
anonymous
  • anonymous
Everywhere I said sequence, I meant series*

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

courtneygraley009
  • courtneygraley009
Use this math calculator to solve this geometric series. http://www.acalculator.com/quadratic-equation-calculator-formula-solver.html
Error1603
  • Error1603
b

Looking for something else?

Not the answer you are looking for? Search for more explanations.