anonymous
  • anonymous
Please help! Need it urgently! Will fan and medal! Madison is financing $382,300 to purchase a house. How much money will she save over the life of a 30 year, fixed rate loan by buying 3 points with a rate of 5.13% instead of not buying points with a rate of 5.88%? Round to the nearest dollar $60,948 $63,242 $53,302
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@mathmate can you help me? I think it's $63,242 but I'm not sure. .
mathmate
  • mathmate
First, it is important to understand what is meant by "buying 3 points". Each point reduces the interest rate by 0.25%, so 5.88% becomes 5.13% after buying three points. The actual amount paid for each point is irrelevant here.
mathmate
  • mathmate
If you chose $63242, how much did you get for the monthly payment at each interest rate?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
For the 5.88% interest rate I got $374 for monthly payments for 30 years
anonymous
  • anonymous
For the 5.13% I got $345 for monthly payments for 30 years
mathmate
  • mathmate
I'm not sure $345 is right. $345*30 years *12months/year = 124200 which is not even one third of the money borrowed.
anonymous
  • anonymous
This is the calculator I used :/ https://www.creditkarma.com/calculators/amortization
anonymous
  • anonymous
@mathmate do you know a formula I can use or can you walk me through it please?
mathmate
  • mathmate
The calculator is correct, but don't know what numbers you put in: Principal is 382300 interest is 5.88% p.a. (or 5.13% p.a.) # of years is 30. I do not get $345. Can you try it again? After that, we can look at formulas.
anonymous
  • anonymous
Ah I see! Sorry, I think I put the 63,242 instead of 382,300 :/ Okay so using the 5.88% interest rate, the monthly payments are $2,263. And the 5.14% interest rate gives a monthly payment of 2,083
mathmate
  • mathmate
A few corrections: 1. the interest rates are 5.88% and 5.13% 2. I do not get any of the given answers, even though one of them is closer to mine. Can you check if the principal is indeed 382300, and not for example 373300?
anonymous
  • anonymous
The principal is $382,300. I used the interest rate 5.13% but didn't check before I sent it to you but I did use 5.13 not 5.14.
anonymous
  • anonymous
It shows me that the Monthly Principal & Interest is $2,083 for 5.13%
mathmate
  • mathmate
The answer is then the difference, and multiplied by 360 months, or (2263-2083)*360 which gives $64800. A more accurate calculation can be done using formulas: Let A=amount borrowed P=monthly payment R=1+monthly interest n=number of months Then P=\(\Large \frac{AR^n*(R-1)}{R^n-1}\) which gives monthly payments of $2262.67 and $2082.75 respectively. Over 30 years, the difference is $64771.45
mathmate
  • mathmate
I am not able to reproduce exactly any of the give answers. If your teacher shows you a way to do that, please post the explanations.
anonymous
  • anonymous
No he hasn't given us any formulas or anything to find the answer, that's why I needed help. But thank you so much for your help and your patience!
mathmate
  • mathmate
no problem! Please use the formula to check my calculations. Let me know if you find anything wrong.

Looking for something else?

Not the answer you are looking for? Search for more explanations.