anonymous
  • anonymous
Help finding the indefinite integral of one over sqrt of 1 + sqrt x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
figure??
anonymous
  • anonymous
\[\int\limits_{}^{} \frac{1}{\sqrt{1+\sqrt{x}}}\] And i know i'm gonna need trig functions.
anonymous
  • anonymous
take root x = u^2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[x^{1/2} = u^{2} \]
anonymous
  • anonymous
then differentiate \[x^{1/2}\] and get back to me
anonymous
  • anonymous
|dw:1433523869741:dw|
anonymous
  • anonymous
@cambrige okay I got the derivative of x^(1/2)|
anonymous
  • anonymous
so dx= ur ans??
anonymous
  • anonymous
My answer was 1 over 2root x. dx
anonymous
  • anonymous
I'm lost now.
anonymous
  • anonymous
@Concentrationalizing excuse me, if you could would you please help me with this problem?
anonymous
  • anonymous
Consider u = 1 + \(\sqrt{x}\) du = \(\frac{1}{2\sqrt{x}}\)dx \(2\sqrt{x}du\) = dx Now, also notice from our substitution that \(\sqrt{x} = u-1\) Therefore we have \(2(u-1)du = dx\) Substituting these values into the integral gives: \[\int\limits_{}^{}\frac{ 1 }{ \sqrt{1+\sqrt{x}} }dx = \int\limits_{}^{}\frac{ 2(u-1) }{ \sqrt{u} }du\] Now we simply split this into two integrals and solve each. \[\int\limits_{}^{}\frac{ 2u-2 }{ \sqrt{u} }du = \int\limits_{}^{}\frac{ 2u }{ \sqrt{u} }du - \int\limits_{}^{}\frac{ 2 }{ \sqrt{u} }du\] And of course the left integral reduces and we have these two integrals \[2\int\limits_{}^{}\sqrt{u}du- 2\int\limits_{}^{}\frac{ 1 }{ \sqrt{u} }du\] Now just integrate each and plug back in your substitution from there. Think you can handle the integration from here? :) @study_guy2

Looking for something else?

Not the answer you are looking for? Search for more explanations.