cutiecomittee123
  • cutiecomittee123
how do i find the foci of an elipse?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
do you know where the center and vertexes are?
amistre64
  • amistre64
if so, then the foci are an odd construction of the usual pythag thrm ... in this case, b and c are legs, and a is a hypotenus giving us a rather strange look of c^2 + b^2 = a^2, such that x is the distance from center to focus
cutiecomittee123
  • cutiecomittee123
well the equation i have is (x+2)^2/9+(y-4)^2/36=1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
then we know a^2 and b^2, right?
cutiecomittee123
  • cutiecomittee123
yes
amistre64
  • amistre64
so show me c^2 :)
cutiecomittee123
  • cutiecomittee123
36+ =9 c^2=25
cutiecomittee123
  • cutiecomittee123
-25
amistre64
  • amistre64
36 - 9 = 27
cutiecomittee123
  • cutiecomittee123
oh yeah lol
amistre64
  • amistre64
so 3cbrt3 = c, or this distance from center.
amistre64
  • amistre64
3 sqrt3 lol
amistre64
  • amistre64
so, tell me our center, and in what direction we need to move
cutiecomittee123
  • cutiecomittee123
center (-2,4) we move left and right
amistre64
  • amistre64
not left and right notice that under y is bigger than under x y is bigger than x, so our focuses are going to be in relation to y |dw:1433524715502:dw|
cutiecomittee123
  • cutiecomittee123
so (-2, 4+ or - 3sqrt3)
amistre64
  • amistre64
yes
cutiecomittee123
  • cutiecomittee123
alright
cutiecomittee123
  • cutiecomittee123
thanks:)
amistre64
  • amistre64
youre welcome
cutiecomittee123
  • cutiecomittee123
can you help me with one other thing
amistre64
  • amistre64
depends on what it is and how good my memory is :)
cutiecomittee123
  • cutiecomittee123
finding the eccentricity of (x+7)^/16+(y-3)^2/4=1
amistre64
  • amistre64
define the formula for eccentricity
cutiecomittee123
  • cutiecomittee123
eccentricity = c/a
amistre64
  • amistre64
thats what i thought so sqrt(c^2/a^2) should work .. c^2 is the difference of the bottoms, and a^2 is the larger of them
cutiecomittee123
  • cutiecomittee123
So sqrt 12/4
amistre64
  • amistre64
um, 16 is bigger than 4
cutiecomittee123
  • cutiecomittee123
because sqrt 16 is 4
amistre64
  • amistre64
oh, youve got some notation off then sqrt(12/16) sqrt(3/4) sqrt(3)/2
cutiecomittee123
  • cutiecomittee123
Wait I dont get how you reduced those? wouldnt it just be sqrt(3/4)
cutiecomittee123
  • cutiecomittee123
Like why did you reduce so far?
amistre64
  • amistre64
thats what you do with fractions, you reduce them till they have no common factors
cutiecomittee123
  • cutiecomittee123
makes sense.
cutiecomittee123
  • cutiecomittee123
So final answer is sqrt (3/2)
amistre64
  • amistre64
\[\sqrt{\frac{16-4}{16}}\] \[\sqrt{\frac{12}{16}}\] \[\sqrt{\frac{4*3}{4*4}}\] \[\sqrt{\frac{3}{4}}\] \[\frac{\sqrt3}{\sqrt4}\]
cutiecomittee123
  • cutiecomittee123
then reduce? or
amistre64
  • amistre64
can it be simplified more?
amistre64
  • amistre64
i just showed you some of the process, i didnt finish it ... i figured youd be cognizant enough to see where its going.
cutiecomittee123
  • cutiecomittee123
yea sqr t4 is equal to 2
amistre64
  • amistre64
then lets go with sqrt(3) /2
cutiecomittee123
  • cutiecomittee123
Then you have sqrt(3/2) :) thanks
amistre64
  • amistre64
no, not sqrt (3/2) im not sure if its a typing error of yours, or if you are making a mistake. it is: sqrt(3) ------ 2
amistre64
  • amistre64
sqrt(3) sqrt(3) ----- = ----- sqrt(4) 2
cutiecomittee123
  • cutiecomittee123
yeah thats how I percieved it and meant it
amistre64
  • amistre64
good luck :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.