Andrew solved the following inequality, and his work is shown below: −4(x + 8) + 25 ≤ −2 + 1(x − 50) −4x − 32 + 25 ≤ −2 + 1x − 50 −4x − 7 ≤ 1x − 52 −5x ≤ −45 x ≤9 What mistake did Andrew make in solving the inequality?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Andrew solved the following inequality, and his work is shown below: −4(x + 8) + 25 ≤ −2 + 1(x − 50) −4x − 32 + 25 ≤ −2 + 1x − 50 −4x − 7 ≤ 1x − 52 −5x ≤ −45 x ≤9 What mistake did Andrew make in solving the inequality?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

@math&ing001
A. He subtracted 1x from both sides when he should have added 4x. B.When dividing by −5, he did not change the ≤ to ≥. C.He added 7 to both sides when he should have added 52. D.He did not make a mistake.
I saw no mistake but i could be wrong.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

when dividing both sides by a negative you have to flip the signs
Oh okay so the answer is B.
yes
Thanks for your help @welshfella
yw

Not the answer you are looking for?

Search for more explanations.

Ask your own question