• anonymous
Two tiny, spherical water drops, with identical charges of -2.80 10-17 C, have a center-to-center separation of 2.0 cm. (a) What is the magnitude of the electrostatic force acting between them? N (b) How many excess electrons are on each drop, giving it its charge imbalance? electrons
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • johnweldon1993
The force acting between them would be \[\large F = k\frac{q_1\times q_2}{r^2}\] However, here \(\large q_1 = q_2\) so lets just write \[\large F = k\frac{q^2}{r^2}\] So for part A we would have \[\large F = 9\times 10^9 \frac{Nm^2}{C^2}\times \frac{(-2.80\times 10^{-17}C)^2}{(0.02m)^2} = ?\] Part B, We can use the expression \(\large ne = q\) where e = the charge of an electron and q is the net charge So we would solve that for 'n' using the fact that we are given the net charge in the question \[\large n = \frac{q}{e}\] \[\large n = \frac{-2.80\times 10^{-17}C}{-1.6\times 10^{-19}C}=?\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.