anonymous
  • anonymous
Set up an integral that represents the area bounded by y = x^2 and y =abs( x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Jack1
  • Jack1
graph attached
1 Attachment
Jack1
  • Jack1
so as u can see, the area bounded by these 2 lines is between (-1,1) to (0,0) then 0,0 to 1,1
welshfella
  • welshfella
|dw:1433587773344:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jack1
  • Jack1
|dw:1433588439697:dw| don't forget it's absolute value of x... otherwise wont work for -ve x values section I think...? @welshfella
Jack1
  • Jack1
\[\Large \int\limits_{0}^{1}(\left| x \right| -x^2)~ dx + \int\limits_{-1}^{0}(\left| x \right| -x^2)~ dx\]
welshfella
  • welshfella
it does not matter because the integral of x is x^2/2 which will give a positive value anyway
Jack1
  • Jack1
true... sorry
welshfella
  • welshfella
as the 2 areas each side of the y axis are the same you could write it as |dw:1433590128375:dw|
welshfella
  • welshfella
- easier to work out

Looking for something else?

Not the answer you are looking for? Search for more explanations.