What is the limit as x approaches a of x-a/√x-√a

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What is the limit as x approaches a of x-a/√x-√a

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\frac{x-a}{\sqrt{x}-\sqrt{a}}=\frac{x-a}{\sqrt{x}-\sqrt{a}}.\frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}\]
its quite simple ...
you can solve it by trick ..

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

take derivative of above and below saperately then put the limit in answer ...
\[\large \lim_{x\rightarrow a}\frac{x-a}{\sqrt{x} - \sqrt{a}}\] Becomes 0/0 so we can take the derivative of the top wrt 'a' and the the derivative of the bottom wrt 'a' \[\large \frac{-1}{-\frac{1}{2}a^{-1/2}}\] \[\large \frac{-1}{\frac{-1}{-2\sqrt{a}}}\] Which will come out to \(\large 2\sqrt{a}\)
*accidentally put a 2nd negative sign in the bottom fraction...only supposed to be one negative...answer remains the same however
yes it will be \[2\sqrt{a}\]
I prefer @sirm3d method.
as you wish but if you have to solve extensive Q you should now the tricks also ...

Not the answer you are looking for?

Search for more explanations.

Ask your own question