gabbyalicorn
  • gabbyalicorn
The prism has a surface area of 202 ft2. What would the surface area of the prism be if each dimension were tripled?
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

gabbyalicorn
  • gabbyalicorn
Michele_Laino
  • Michele_Laino
the new dimensions are: 5*3=... 9*3=... 4*3=...
gabbyalicorn
  • gabbyalicorn
15 27 and 12

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
correct!
gabbyalicorn
  • gabbyalicorn
then x by them?
gabbyalicorn
  • gabbyalicorn
which us 4860
Michele_Laino
  • Michele_Laino
please wait a moment, I'm checking your computation
gabbyalicorn
  • gabbyalicorn
kk
Michele_Laino
  • Michele_Laino
your problem asks for the area of the total surface of the prism. Now the area of the total surface of your prism is given by the subsequent computation: A=2*(15*27+ 15*12+27*12)=...
gabbyalicorn
  • gabbyalicorn
i got 121608
gabbyalicorn
  • gabbyalicorn
is that correct?
Michele_Laino
  • Michele_Laino
here more steps: \[\Large \begin{gathered} A = 2 \times \left( {15 \times 27 + 15 \times 12 + 27 \times 12} \right) = \hfill \\ \hfill \\ = 2 \times \left( {405 + 180 + 324} \right) = ... \hfill \\ \end{gathered} \]
gabbyalicorn
  • gabbyalicorn
1314
Michele_Laino
  • Michele_Laino
I got a different result
gabbyalicorn
  • gabbyalicorn
wait do we add the two together?
Michele_Laino
  • Michele_Laino
yes!
gabbyalicorn
  • gabbyalicorn
i got 122922
Michele_Laino
  • Michele_Laino
you have to compute this: 405+180+324=... \[\large \begin{gathered} A = 2 \times \left( {15 \times 27 + 15 \times 12 + 27 \times 12} \right) = \hfill \\ \hfill \\ = 2 \times \left( {405 + 180 + 324} \right) = \hfill \\ \hfill \\ = 2 \times 909 = ... \hfill \\ \end{gathered} \]
gabbyalicorn
  • gabbyalicorn
1818 plus 122922 = 124740
Michele_Laino
  • Michele_Laino
no, it is: A= 1818 feet^2 only
gabbyalicorn
  • gabbyalicorn
-3- hm?
gabbyalicorn
  • gabbyalicorn
I didnt get that, sorry. :/
Michele_Laino
  • Michele_Laino
the new area of the total surface is, namely your answer, is: \[\Large \begin{gathered} A = 2 \times \left( {15 \times 27 + 15 \times 12 + 27 \times 12} \right) = \hfill \\ \hfill \\ = 2 \times \left( {405 + 180 + 324} \right) = \hfill \\ \hfill \\ = 2 \times 909 = 1818fee{t^2} \hfill \\ \end{gathered} \]
gabbyalicorn
  • gabbyalicorn
oh :l
gabbyalicorn
  • gabbyalicorn
i see now...
Michele_Laino
  • Michele_Laino
since we have to sum the area of all of the six sides of your prism
gabbyalicorn
  • gabbyalicorn
so 10908? 1818 x 6
Michele_Laino
  • Michele_Laino
no, we have finished, your answer is: A= 1818 feet^2
gabbyalicorn
  • gabbyalicorn
oh kk. Thank you!!! ^u^
Michele_Laino
  • Michele_Laino
:)
jim_thompson5910
  • jim_thompson5910
Old Surface Area = 202 ft^2 New Surface Area = 1818 ft^2 Notice we have this ratio: (new area)/(old area) = 1818/202 = 9 and how 3^2 = 9. This is no coincidence. The old surface area is multiplied by 3^2 = 9 to get the new surface area. If you asked "What would the surface area of the prism be if each dimension were quadrupled?", then you would multiply the old surface area by 4^2 = 16 to get the new surface area

Looking for something else?

Not the answer you are looking for? Search for more explanations.