anonymous
  • anonymous
If x is a binomial random variable, compute p(x) for each of the following cases: n=5, x=1, p = 0.2 n=4, x=2, q = 0.4 n=3, x=0, p = 0.7 n=5, x=3, p = 0.1 n=4, x= 2, q = 0.6 n=3, x=1, q = 0.9
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
P(x)=n!/ (x!(n−x)!) * p^x(1−p)^(n−x) is the formula you have to evaluate for each number set. Can you see where that takes you? the n! Just means 1*2*....*n So plug in the numbers and see what you get.
anonymous
  • anonymous
Let me walk you through the first example then n=5, x=1, p = 0.2 We know P(x)=n!/ (x!(n−x)!) * p^x(1−p)^(n−x) so 5!/(1! * (5-1)!) * 0.2^1 * (1-0.20)^(5-1) = 120/24 * 0.2 * 0.8^4 = 0.4096

Looking for something else?

Not the answer you are looking for? Search for more explanations.