Saylilbaby
  • Saylilbaby
i need help with 3-8 anyone....i will give medals....
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Saylilbaby
  • Saylilbaby
1 Attachment
ybarrap
  • ybarrap
In order to complete this exercise, you'll need to count the number of dots for each bin: I'll start 60 - 1 61 - 1 62 - 0 63 - 1 ... Finish the rest and we'll continue
Saylilbaby
  • Saylilbaby
60-1 61-1 62-0 63-1 64-0 65-1 66-0 67-0 68-3 69-2 70-2 71-0 72-1 73-0 74-1 75-0 76-3 77-0 78-1 79-1 80-4 81-0 82-4 83-0 84-1 85-2 86-3 87-1 88-1 89-1 90-5 91-0 92-4 93-0 94-0 95-3 96-0 97-0 98-1 99-1 100-1 @ybarrap

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Saylilbaby
  • Saylilbaby
@Concentrationalizing
Saylilbaby
  • Saylilbaby
@jabez177
Saylilbaby
  • Saylilbaby
@Awolflover1
Saylilbaby
  • Saylilbaby
@sleepyjess
Saylilbaby
  • Saylilbaby
@ganeshie8
ybarrap
  • ybarrap
Using your values we get (see attached):
1 Attachment
ybarrap
  • ybarrap
You'll see how we compute mean and standard deviation in the attached above: Mean \( \bar{x}=81.72\) Standard deviation \(\sigma = 10.4\)
ybarrap
  • ybarrap
You can drill down into each cell in the spreadsheet to see the formula I used. Does this make sense?
ybarrap
  • ybarrap
We used the following definition for mean and standard deviation: $$ \operatorname{E}[X] = x_1p_1 + x_2p_2 + \dotsb + x_kp_k \;\\ \operatorname{Var}(X) = \sum_{i=1}^n p_i\cdot(x_i - \mu)^2 = \sum_{i=1}^n (p_i\cdot x_i^2) - \mu^2\\ \sigma = \sqrt{Var(X)} $$ Where \(x_i\) are the bin values, 60, 61, etc...and \(p_i\) are their probabilities.
ybarrap
  • ybarrap
And $$ \bar{x}=E[X] $$

Looking for something else?

Not the answer you are looking for? Search for more explanations.