help @Nnesha

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

What is the simplified form of 15 times x to the sixth power over 20 times y to the fifth power times the fraction 6 times y-squared over 5 times x to the fourth power ? 9 x-squared over 10 y-cubed 9 x cubed over 10 y-squared 10 x cubed over 9 y-squared 10 x squared over 9 y-cubed
so the question is \[\frac{15x^6}{20y^5} \times \frac{6y^2}{5x^4}\] so if you simplify it you get \[\frac{90x^6y^2}{100x^4y^5}\] start by simplfying 90/100 = then with the powers, use the index law for division, subtract the powers for the same base \[\frac{x^a}{x^b} = x^{a - b}\] if you get a negative power it just indicates a fraction \[x^{-a} = \frac{1}{x^a}\] hope it helps
@Nnesha can you help i dont get ot

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

everything is there! :-) reread that
i dont understand it
tell me what part u don't get 4rm that ? i have nothing to add :-)
divide 90/100= ?? keep it in fraction form reduce the fraction
if there are same bases at the denominator and numerator you have to use exponent rule \[\huge\rm \frac{ x^a }{ x^b } = x^{a-b}\]
for example \[\rm \frac{ 3^3 }{ 3^2 } = 3^{3-2}\]
okay so i got 9x^3/10y^3
like when i used a calculator idk this one is confusing
in other words x^6 can be written as \[\huge\rm \frac{ x \times x \times x \times x \times x \times x }{ x \times x \times x \times x }\] now cancel x's
when you multiply same bases u should their exponent so that's how we can factor x^6
|dw:1433721432895:dw| like this so \[\huge\rm \frac{ x^6 }{ x^4 } = ?\]
x^6-4
yes! that's right
so x^?
x^2
yep right
what about y
y^2-5?
yes right
or y ^5-2
oh ok
nope first one is right you will get negative answer then you have to use another exponent rule \[\huge\rm x^{-m}= \frac{ 1 }{ x^m }\]
so y^-3 = 1/y^-3?
look at the exponent rule i gave find ot ur mistake
you*
let m =3
so 1/x^3?
yes right!
okay so is the answe A?
@jigglypuff314 is the answer A?
That's what I got! :)
thnx
can you help with this
Using a directrix of y = -2 and a focus of (1, 6), what quadratic function is created? f(x) = one eighth (x - 1)2 - 2 f(x) = -one eighth (x + 1)2 - 2 f(x) = -one sixteenth (x + 1)2 - 2 f(x) = one sixteenth (x - 1)2 + 2
:blinks: you might want to ask that as a separate question ^_^
okay

Not the answer you are looking for?

Search for more explanations.

Ask your own question