Suppose f(π/3) = 3 and f '(π/3) = −5, and let g(x) = f(x) sin x and h(x) = (cos x)/f(x). Find the following. (a) g'(π/3)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Suppose f(π/3) = 3 and f '(π/3) = −5, and let g(x) = f(x) sin x and h(x) = (cos x)/f(x). Find the following. (a) g'(π/3)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

and h'(pi/3) I found g' but im having a difficult time with h'
Well, we would just need to do a quotient rule and find the derivative of h(x). Did you try doing that?
yeah but i got it wrong, im not sure what i did

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Well, derivative of cos(x) is -sin(x) and derivative of f(x) is f'(x). So following quotient rule we have \[h'(x) = \frac{ -\sin(x)f(x)-\cos(x)f'(x) }{ [f(x)]^{2} }\] Now we justplug in pi/3
Im confused, i would plug in pi/3 for the x, or the values that i was given?
Plug in pi/3 into every x in h'(x)
would my answer be (5/18)-3root3/18?
Yes. And of course the 3root3/18 goes root3/6
Thank you!!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question