anonymous
  • anonymous
PLEASE HELP
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
UnkleRhaukus
  • UnkleRhaukus
\[\frac92\log_2(x)=9\] multiply both sides by 2/9, to get rid of that fraction on the left hand side
anonymous
  • anonymous
so 5.3399?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i entered it and its wrong
UnkleRhaukus
  • UnkleRhaukus
\[\frac92\log_2(x)=9\\ \frac29\times\frac92\log_2(x)=\frac29\times9\\ \cdots=\cdots\]
UnkleRhaukus
  • UnkleRhaukus
can you simplify both sides now?
anonymous
  • anonymous
log2(x)=1?
UnkleRhaukus
  • UnkleRhaukus
you've got the left hand side right, but check that right hand side again
anonymous
  • anonymous
Im not sure what i did wrong
UnkleRhaukus
  • UnkleRhaukus
\[\frac29\times9=\frac2{\cancel 9}\times\cancel 9\]
anonymous
  • anonymous
log2(x)=2?
UnkleRhaukus
  • UnkleRhaukus
right ! now we use the definition of a log \[\log_b a = c\iff a=b^c\]
anonymous
  • anonymous
log2 (2) = 1?
UnkleRhaukus
  • UnkleRhaukus
you had \[\log_2(x) = 2\] so \[x = . . . \]
anonymous
  • anonymous
im so confused
UnkleRhaukus
  • UnkleRhaukus
\[\log_b(a) = c\iff a=b^c\] \[\log_2(x) = 2\iff x=?^{??}\]
anonymous
  • anonymous
2
UnkleRhaukus
  • UnkleRhaukus
what is the final equation x =
anonymous
  • anonymous
i dont know!! how do i fnid log2(x)=2
UnkleRhaukus
  • UnkleRhaukus
Use the definition for example \[\log_{10}(A) = 3 \iff A = 10^3 = 1000\]
anonymous
  • anonymous
ohhhh 4?
UnkleRhaukus
  • UnkleRhaukus
yeah that is the final answer for x
anonymous
  • anonymous
i dont get it, the computer says its .25
UsukiDoll
  • UsukiDoll
it's probably due to the confusion of the regular 2 being typed out and the subscript 2... .25 = 1/4 . so the computer claims that it's 1/4 -> .25?!
UnkleRhaukus
  • UnkleRhaukus
oh it is meant to equal -9 not 9
UnkleRhaukus
  • UnkleRhaukus
whoops
UsukiDoll
  • UsukiDoll
lol latex typo
UnkleRhaukus
  • UnkleRhaukus
\[\frac92\log_2(x)=-9\\ \frac29\times\frac92\log_2(x)=\frac29\times-9\\ \cdots=\cdots\]
UsukiDoll
  • UsukiDoll
I see ... \[\log_2(x) = -2\]
UsukiDoll
  • UsukiDoll
\[\log(x) = 2^{-2}\] \[\frac{1}{2^2} \rightarrow \frac{1}{4}\]
anonymous
  • anonymous
ohhhhh makes sense
UsukiDoll
  • UsukiDoll
also known as .25 in decimal form
UnkleRhaukus
  • UnkleRhaukus
(sorry bout that @Polkapen )
anonymous
  • anonymous
i have one more question
UsukiDoll
  • UsukiDoll
I'm about to faint...sorry I have yet to eat dinner. ~_~
anonymous
  • anonymous
oh ok

Looking for something else?

Not the answer you are looking for? Search for more explanations.