mathmath333
  • mathmath333
Find the range of \(x\)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align} (2x+3)(x-5)<0\hspace{.33em}\\~\\ \end{align}}\)
ganeshie8
  • ganeshie8
the parabola cuts the x axis at points -3/2 and 5 so it looks like this |dw:1433764773998:dw|
ganeshie8
  • ganeshie8
\[-\frac{3}{2}~\lt~x\lt~5\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmath333
  • mathmath333
But if i evaluate individually \((2x+3)<0\) and \((x-5)<0\) then it comes as \(x<-\dfrac{3}{2}\) and \(x<5\) so it should be \(x<5\) ?
ganeshie8
  • ganeshie8
product of two negatives always gives you > 0
ganeshie8
  • ganeshie8
\[a*b \lt 0 \] implies \[a\lt 0,~\text{and}~ b\gt 0\] or \[a\gt 0,~\text{and}~b\lt 0\]
ganeshie8
  • ganeshie8
\[(2x+3)*(x-5) \lt 0 \] implies \[(2x+3)\lt 0,~\text{and}~ (x-5)\gt 0\] or \[(2x+3)\gt 0,~\text{and}~(x-5)\lt 0\]
mathmath333
  • mathmath333
so by the above as u stated it can also be \(x<-\dfrac{3}{2}\) and \(x>5\)
ganeshie8
  • ganeshie8
Yes, but are there any numbers in real that are both less than -3/2 and greater than 5 ?
mathmath333
  • mathmath333
no
ganeshie8
  • ganeshie8
so that case yields an emptyset
ganeshie8
  • ganeshie8
we work the other case
mathmath333
  • mathmath333
is that the only algebraic method u stated
ganeshie8
  • ganeshie8
i don't like algebraic method when the product has only 2 factors i prefer visualizing a parabola
ganeshie8
  • ganeshie8
because the x intercepts are readily avilable when you're given the inequality in product form
mathmath333
  • mathmath333
|dw:1433765981235:dw| how did u visualize the shaded region
ganeshie8
  • ganeshie8
\[\large \color{black}{\begin{align} (2x+3)(x-5)\color{red}{<}0\hspace{.33em}\\~\\ \end{align}}\] you want the product to be less than 0 so just shade the region below x axis
ganeshie8
  • ganeshie8
check this https://www.khanacademy.org/math/algebra2/polynomial_and_rational/quad_ineq/v/quadratic-inequalities-visual-explanation
anonymous
  • anonymous
@mathmath333 that isnt you in your profile picture :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.