HelloKitty17
  • HelloKitty17
If the quantity 4 times x times y cubed plus 8 times x squared times y to the fifth power all over 2 times x times y squared is completely simplified to 2xayb + 4xcyd, where a, b, c, and d represent integer exponents, what is the value of a? _______
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Do you have any idea?
mathstudent55
  • mathstudent55
Can you use the equation editor or the draw tool to show what you mean? Is it this? \(\Large \dfrac{4xy^3 + 8x^2y^5}{2xy^2} = 2x^ay^b + x^cy^d\)
HelloKitty17
  • HelloKitty17
sort of but the question is asking what is the value of a

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

OregonDuck
  • OregonDuck
Value of a is zero 2xy2(2y+4xy3)2xy2 cancels the 2xy^2 on top and bottom =2y+4xy3=2x0y1+4x1y3 so x^a= x^0 a=0
mathstudent55
  • mathstudent55
I understand what the question is asking. My question is if the above expression is correct.
mathstudent55
  • mathstudent55
You can separate the left side into two fractions. \(\Large \dfrac{4xy^3 + 8x^2y^5}{2xy^2} = 2x^ay^b + x^cy^d\) \(\Large \dfrac{4xy^3}{2xy^2} + \dfrac{8x^2y^5}{2xy^2} = 2x^ay^b + x^cy^d\) Now reduce each fraction. When you divide powers with the same base, subtract the exponents.
mathstudent55
  • mathstudent55
\(\Large \dfrac{4}{2} \times \dfrac{x}{x} \times \dfrac{y^3}{y^2} + \dfrac{8}{2} \times \dfrac{x^2}{x} \times \dfrac{y^5}{y^2} = 2x^ay^b + x^cy^d\)
mathstudent55
  • mathstudent55
\(\Large 2x^{1-1}y^{3-2} + 4x^{2-1}y^{5-2} = 2x^ay^b + 4x^cy^d\)
mathstudent55
  • mathstudent55
\(\Large 2x^{0}y^{1} + 4x^{1}y^{3} = 2x^ay^b + 4x^cy^d\)
mathstudent55
  • mathstudent55
Now you can compare each exponent on the left side with each variable, a, b, c, and d, on the right side to see what value each of those variables has.
mathstudent55
  • mathstudent55
\(\Large 2x^{\color{red}{0}}y^{\color{green}{1}} + 4x^{\color{blue}{1}}y^{\color{brown}{3}} = 2x^\color{red}{a}y^\color{green}{b} + 4x^\color{blue}{c}y^\color{brown}{d}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.