idku
  • idku
this can be a very good post...
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
freckles
  • freckles
the best post ever!
anonymous
  • anonymous
yes, it can, but it isn't
Astrophysics
  • Astrophysics
Seriously though, what's the question it shows it's in calculus 1 so it had me excited :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

idku
  • idku
\(\Large \displaystyle\sum_{n=k}^{\infty}~f(n)=~?\) (starting from any whole number k) we know: \(\Large \displaystyle\sum_{n=1}^{\infty}A_n=\frac{A_1}{1-r}\) what is r in initial case? \(\Large \displaystyle r=\lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}\) so, \(\Large \displaystyle\sum_{n=k}^{\infty}~f(n)~=~\frac{A_k}{1-r}\) \(\Large \displaystyle\sum_{n=k}^{\infty}~f(n)~=\frac{A_k}{\displaystyle1-\left(\lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}\right)}\) i don't even know why so many people are viewing.... (btw, just had to depart for a little)
idku
  • idku
that is just a general thing that works for any f
idku
  • idku
just a quick thought ... ))

Looking for something else?

Not the answer you are looking for? Search for more explanations.