anonymous
  • anonymous
Diana received 65 points on a project for school. She can make changes and receive three-tenths of the missing points back. She can make as many corrections as she wants. Create the formula for the sum of this geometric series and explain your steps in solving for the maximum grade Diana can receive. Identify this as converging or diverging.
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
For an infinite geometric series, the sum is \[\sum_{n=1}^{\infty}ar ^{n-1}=\frac{a}{1-r}\] first term = a= 65, common ratio = r = 0.3 \[\sum_{n=1}^{\infty}65(0.3) ^{n-1}=\frac{65}{1-0.3}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.