anonymous
  • anonymous
cosx/ (1+sinx) + (1+sinx)/ cosx= 2secx
Trigonometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
johnweldon1993
  • johnweldon1993
\[\large \frac{cos(x)}{1 + sin(x)} + \frac{1 + sin(x)}{cos(x)} = 2sec(x)\] We need a common denominator first...what would that be?
johnweldon1993
  • johnweldon1993
We can see the first fraction is missing a factor of cos(x) on the bottom...and we can see that the second fraction is missing a factor of 1 + sin(x) so we can work with that... \[\large \frac{cos(x)}{cos(x)} \times \frac{cos(x)}{1 + sin(x)} + \frac{1 + sin(x)}{1 + sin(x)} \times \frac{1 + sin(x)}{cos(x)} = 2sec(x)\] And simplify that down a bit \[\large \frac{cos^2(x)}{(1 + sin(x))cos(x)} + \frac{(1 + sin(x))^2}{(1 + sin(x))cos(x)} = 2sec(x)\] Now lets put them over the common denominator \[\large \frac{cos^2(x) + (1 + sin(x))^2}{(1 + sin(x))cos(x)} = 2sec(x)\] Now...what can we replace \(\large cos^2(x)\) with?

Looking for something else?

Not the answer you are looking for? Search for more explanations.