cosx/ (1+sinx) + (1+sinx)/ cosx= 2secx

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

cosx/ (1+sinx) + (1+sinx)/ cosx= 2secx

Trigonometry
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\large \frac{cos(x)}{1 + sin(x)} + \frac{1 + sin(x)}{cos(x)} = 2sec(x)\] We need a common denominator first...what would that be?
We can see the first fraction is missing a factor of cos(x) on the bottom...and we can see that the second fraction is missing a factor of 1 + sin(x) so we can work with that... \[\large \frac{cos(x)}{cos(x)} \times \frac{cos(x)}{1 + sin(x)} + \frac{1 + sin(x)}{1 + sin(x)} \times \frac{1 + sin(x)}{cos(x)} = 2sec(x)\] And simplify that down a bit \[\large \frac{cos^2(x)}{(1 + sin(x))cos(x)} + \frac{(1 + sin(x))^2}{(1 + sin(x))cos(x)} = 2sec(x)\] Now lets put them over the common denominator \[\large \frac{cos^2(x) + (1 + sin(x))^2}{(1 + sin(x))cos(x)} = 2sec(x)\] Now...what can we replace \(\large cos^2(x)\) with?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question