anonymous
  • anonymous
Find the 6th term of a geometric sequence with t1 = 7 and t9 = 45,927.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kropot72
  • kropot72
The formula for the n-th term of a geometric sequence is given by: \[\large ar^{n-1}\] where a is the first term and r is the common difference. When we plug in the given values, and knowing the value of the ninth term, we can write: \[\large 45927=7r^{9-1}...........(1)\] Now you need to solve equation (1) to find the value of r, the common difference.
kropot72
  • kropot72
Rearranging equation (1) gives: \[\large r^{8}=6561\] and the value of r is given by: \[\large r=\sqrt[8]{6561}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.